Switch and Phase Shifter
Backed by its experienced microwave team, process team, and management team, Hangtai Technology has been consistently advancing the R&D and production standards of microwave components. The microwave components developed by this division are able to not only fulfill the requirements of the company’s radar and radio altimeter products but also contribute to serving societal needs.
Related products
MDY-71/74 Millimeter Wave Guidance Radar
The MDY-71/74 demonstration radar is a compact millimeter-wave coherent guidance radar that utilizes a phase difference system. It boasts key features including low cost, low power consumption, and high reliability, enabling it to detect and track targets—such as vehicles and vessels—within its beam coverage. Additionally, this radar can provide critical target information like distance and angle, while also supporting situational display functionality.
Full Function Radio Altimeter MMK-4
The MMK-4 altimeter is a full-function radio altimeter that meets aerospace standards; serving as a key component for longitudinal altitude channel control, it can be widely applied in cruise missiles and aircraft to measure altitude relative to the sea or ground. The MMK-4 adopts linear modulation coefficient technology adaptive to height changes and echo signal narrow-band receiving technology to enhance the product’s resistance to active interference, uses coherent local oscillator mixing to achieve superior performance in resisting co-frequency asynchronous interference, employs echo signal spectrum front detection technology to improve tracking accuracy, and follows the design principles of serialization, standardization, and modularization—endowing it with good product inheritance, maturity, and reliability.
Pulse Radar Altimeter MY-600L、MY-800L
The MY-600L altimeter is a fixed-frequency pulse radar altimeter developed for a specific type of aircraft, while the MY-800L altimeter is a frequency-agile pulse radar altimeter designed for another particular aircraft model. Both altimeters find wide application in cruise missiles and aircraft, serving to measure the relative height above the sea or ground. Notably, the MY-600L features a design approach centered on serialization, standardization, and modularization, which endows it with favorable product inheritance, high maturity, and reliable performance.
MASS-15 Continuous Echo Simulation Excitation System of Radio Altimeter
The MASS-15 Continuous Echo Simulation Excitation System of Radio Altimeter is a specialized testing equipment designed to support the performance verification, calibration, and development of radio altimeters. It focuses on generating stable, continuous echo signals that accurately replicate real-world altitude-related signal environments—including varying echo amplitudes, frequency characteristics, and delay parameters corresponding to different flight altitudes and terrain conditions. By providing these realistic simulated excitation signals, the system enables radio altimeters to operate under controlled laboratory conditions, allowing engineers to test key functions such as height measurement accuracy, continuous tracking stability, and anti-interference capability. Its reliable continuous echo simulation function not only replaces the need for complex and costly field tests but also ensures consistent, repeatable test results, making it an essential tool for ensuring the reliability and performance of radio altimeters in practical aviation applications.
Radio Altimeter MY-3001M
The MY-3001m radio altimeter is a radar altimeter developed for the Rainbow XX UAV by a specific institute. It is widely used in UAVs to measure the altitude relative to the sea surface or the ground. This altimeter incorporates a linear modulation coefficient technology adaptable to altitude changes and a narrow-band receiving technology for echo signals, which enhances the product’s resistance to active interference. It also adopts coherent local oscillator mixing, delivering superior performance in resisting synchronous interference, and employs echo signal spectrum front-edge detection technology to improve tracking accuracy. Additionally, it features a three-dimensional design based on serialization, standardization, and modularization, endowing the product with excellent inheritance, maturity, and reliability. While retaining the closed-loop tracking system, the MY-3001m radio altimeter further adopts digital control technology, microwave integration technology, and hybrid integration technology to achieve product modularization. Moreover, its receiver is equipped with dual filters, which further boosts the product’s anti-interference capability.
MY-5001B Radio Altimeter for Sea Condition Identification
The MY-5001B radio altimeter is an all-solid-state C-band device featuring a frequency-modulated continuous wave (FM-CW) system, a constant differential beat frequency, and a closed-loop tracking and measurement mechanism. It ensures a constant beat frequency through servo control of the slope of the sawtooth wave that modulates the microwave oscillator, thereby achieving automatic height tracking. This altimeter incorporates a suite of advanced technologies, including narrowband reception, weighted frequency discrimination, equivalent spectrum leading edge detection, gain PID control, instantaneous sensitivity compensation, temperature compensation, horizon frequency selection design, and power silence. These technologies collectively endow it with advantages such as accurate height measurement, stable tracking, adaptability to various terrains, a wide height measurement range, high precision, and strong anti-interference capabilities.
MY-70D Anti Jamming Radio Altimeter
Operating in the C-band, the MY-70D radio altimeter employs a frequency-modulated continuous wave (FMCW) operating system and incorporates closed-loop tracking measurement technology, equipping it with the capability to resist same-frequency asynchronous interference. This ensures that when multiple aircraft take off and fly simultaneously, their altimeters do not interfere with one another. To achieve resistance against active interference, the altimeter adopts a range of measures, including anti-blocking, anti-burnout, power control, beam control, frequency agility, and frequency modulation (FM) technology. Furthermore, it features silent power supply control for its microwave components; its antenna is fitted with a band-pass filter, and a customized radome with frequency-selective functionality is utilized—these design elements enable the altimeter to achieve a wave transmission rate of ≥85% for the operating frequency within the band and less than 10% for out-of-band frequencies, thereby realizing stealth capabilities.
MDG-400 Radio Altimeter
The MDG-400 radio altimeter operates in the C-band and adopts a frequency-modulated continuous wave (FMCW) working system, with its antenna utilizing a transmit-receive separation mode. Prior to missile launch, the altimeter (serving as the height-fixing device) is powered on, and it undergoes self-check and height presetting via the communication interface. After the missile is launched, the radio frequency (RF) module is activated, and frequency variation parameters are set based on the preset height. When the preset height is achieved, the altimeter outputs height-fixing command information and telemetry data. The MDG-400 altimeter features mature technology; its adoption of frequency-modulated continuous wave (FMCW) technology endows it with the advantages of compact size and a large height measurement range.
