Home » Unmanned System Products » Millimeter Wave Module
Millimeter Wave Module
Drawing on the proficiency of its experienced microwave team, process team, and management team, Hangtai Technology has been continuously enhancing the R&D and production standards of microwave components. The microwave components developed by this division are capable of not only meeting the requirements of the company’s radar and radio altimeter products but also contributing to societal service through practical applications.
Related products
MASS-03 Radio Altimeter Continuous Echo Signal Simulator
The MASS-03 Radio Altimeter Continuous Echo Signal Simulator is a specialized testing device designed to generate stable, continuous echo signals that replicate real-world altitude-related signal environments for radio altimeters. Tailored to support the development, calibration, and performance verification of radio altimeters, it accurately simulates various echo signal characteristics (such as amplitude, frequency, and delay) corresponding to different altitude scenarios, enabling users to test critical functions of radio altimeters—including height measurement accuracy, tracking stability, and anti-interference performance—under controlled laboratory conditions. By providing reliable, repeatable continuous echo signals, the simulator eliminates the need for costly and complex field tests, streamlining the testing process while ensuring radio altimeters meet design specifications for accuracy, stability, and robustness in practical operation.
MASS-15 Continuous Echo Simulation Excitation System of Radio Altimeter
The MASS-15 Continuous Echo Simulation Excitation System of Radio Altimeter is a specialized testing equipment designed to support the performance verification, calibration, and development of radio altimeters. It focuses on generating stable, continuous echo signals that accurately replicate real-world altitude-related signal environments—including varying echo amplitudes, frequency characteristics, and delay parameters corresponding to different flight altitudes and terrain conditions. By providing these realistic simulated excitation signals, the system enables radio altimeters to operate under controlled laboratory conditions, allowing engineers to test key functions such as height measurement accuracy, continuous tracking stability, and anti-interference capability. Its reliable continuous echo simulation function not only replaces the need for complex and costly field tests but also ensures consistent, repeatable test results, making it an essential tool for ensuring the reliability and performance of radio altimeters in practical aviation applications.
MDG-200 Radio Altimeter
The MDG-200 radio height-setting device operates in the C-band and adopts a monopulse working system. Its sensitive component is of the heterodyne type, and the circulator at the antenna terminal uses a transceiver common-mode configuration. Prior to missile launch, the height-setting device needs to be powered on; it then performs a self-check and completes height setting via the communication interface. After the missile is launched, the radio frequency (RF) module is activated, and a gate is set based on the preconfigured height. When the preset height is reached, the device outputs height-setting command information and telemetry data. The MDG-200 height-setting device features mature technology: the monopulse design enhances the altimeter’s height measurement performance, and the device also has the characteristic of not being affected by the carrier’s speed.
MDG-100 Radio Height Setting Device
The MDG-100 radio altimeter operates in the C-band and adopts a pulse Doppler working system. Its sensitive device is of the heterodyne type, and the circulator at the antenna terminal uses a transceiver common-mode design. With mature technology, this altimeter is installed on missiles and serves as a control component for altitude fuzes. It features capabilities such as high burst altitude, strong adaptability to high falling speeds, and excellent performance in resisting ground clutter and sea clutter. Additionally, it employs pseudo-random pulse modulation technology: the pulse period varies randomly within a specified range, making it difficult for jammers to identify the initial modulation pulse of the fuze signal and further predict the delayed pulse. This design effectively enhances the altimeter’s resistance to active interference.
Full Function Radio Altimeter MMK-4
The MMK-4 altimeter is a full-function radio altimeter that meets aerospace standards; serving as a key component for longitudinal altitude channel control, it can be widely applied in cruise missiles and aircraft to measure altitude relative to the sea or ground. The MMK-4 adopts linear modulation coefficient technology adaptive to height changes and echo signal narrow-band receiving technology to enhance the product’s resistance to active interference, uses coherent local oscillator mixing to achieve superior performance in resisting co-frequency asynchronous interference, employs echo signal spectrum front detection technology to improve tracking accuracy, and follows the design principles of serialization, standardization, and modularization—endowing it with good product inheritance, maturity, and reliability.
MASS-06 Continuous Echo Simulation Excitation System of Radio Altimeter
The MASS-06 Echo Signal Simulation Excitation System, hereinafter referred to as the "Simulation Excitation Source", is a dedicated equipment designed for the hardware-in-the-loop (HIL) simulation of radio altimeters. It serves as a key component in replicating real-world echo signal scenarios, providing targeted excitation signals that enable the radio altimeter to operate under simulated physical conditions—effectively bridging the gap between theoretical testing and actual operational environments to validate the altimeter’s performance, responsiveness, and reliability.
Radio Altimeter MY-3001M
The MY-3001m radio altimeter is a radar altimeter developed for the Rainbow XX UAV by a specific institute. It is widely used in UAVs to measure the altitude relative to the sea surface or the ground. This altimeter incorporates a linear modulation coefficient technology adaptable to altitude changes and a narrow-band receiving technology for echo signals, which enhances the product’s resistance to active interference. It also adopts coherent local oscillator mixing, delivering superior performance in resisting synchronous interference, and employs echo signal spectrum front-edge detection technology to improve tracking accuracy. Additionally, it features a three-dimensional design based on serialization, standardization, and modularization, endowing the product with excellent inheritance, maturity, and reliability. While retaining the closed-loop tracking system, the MY-3001m radio altimeter further adopts digital control technology, microwave integration technology, and hybrid integration technology to achieve product modularization. Moreover, its receiver is equipped with dual filters, which further boosts the product’s anti-interference capability.
Subminiature Radio Altimeter MY-3001
The MY-3001 series altimeters include models such as MY-3001A, MY-3001B, MY-3001C, MY-3001D, MY-3001E, MY-3001F, MY-3001G, and MY-3001H; as China’s smallest and lightest full-function radio altimeters that meet aerospace standards, they serve as key components for longitudinal height channel control and can be widely used in cruise missiles and UAVs to measure altitude relative to the sea or ground. The MY-3001 series altimeters adopt linear modulation coefficient technology adaptive to altitude changes and echo signal narrow-band receiving technology to enhance the product’s resistance to active interference, use coherent local oscillator mixing to achieve superior performance in resisting co-frequency asynchronous interference, employ echo signal spectrum front detection technology to improve tracking accuracy, and follow the three design principles of serialization, standardization, and modularization to enable high-speed production; additionally, built on a closed-loop tracking system, they integrate digital control technology, microwave integration technology, and hybrid integration technology to realize ultra-miniaturization of the product. As China’s first full-function radio altimeter, the series is known as the "high-speed rail ticket" in the industry.
